

Liaison radio et récupération des données de la carte Micro:bit

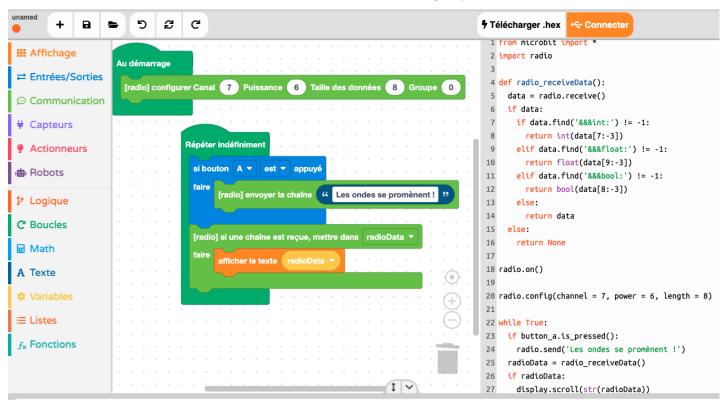
Matériel : par binôme : une carte micro:bit, une connexion internet, un ordinateur région muni du navigateur chrome,un afficheur LCD.

1

Liaison Radio de la carte Micro:bit (30min)

Les technologies sans fil sont basées sur les concepts de la physique : les ondes radio ont certaines propriétés (comme l'amplitude, la pulsation ou la période) modulées par un émetteur de façon à ce que cette information puisse être encodée et ainsi diffusée.

Lorsque des ondes radio rencontrent un conducteur électrique (c'est-à-dire une antenne), elles provoquent l'apparition d'un courant alternatif duquel l'information contenue dans les ondes peut être extraite et retraduite dans sa forme originale.


a) Utilisation de la radio et longueur des données

Le but est de recevoir sur une 1ère carte la donnée envoyée par une 2^{nde} carte en appuyant sur le bouton A de la micro:bit.

Connectez vous au WIFI du lycée et ouvrer « Vittascience » → programmation micro:bit → mode bloc/python

Brancher les cartes une par une et transférer le code suivant :

Attention : Choisisssez un numéro de canal différent de tous les autres groupes !

Appuyer sur le bouton A d'une des cartes. Observer l'autre carte après l'avoir branchée à une batterie externe.

Le message « Les ondes se promènent ! » a-t-il été reçu et s'affiche-t-il ?

Le bloc "Configurer la radio" permet de modifier certains paramètres de transmission radio. Il est possible de choisir la taille des données, la puissance de l'émetteur/récepteur radio et le groupe sur lequel est transmis les données.

Premièrement, nous modifions la taille des données. Elle est définie en nombre d'octets pouvant aller de 0 à 251. On envoie ici une chaîne de caractère assez longue (Ex :"Les ondes se promènent") avec 8 octets comme taille de données.

Q1 : Voyez- vous toute la chaine de caractère ?.....

En effet, avec une taille de 8 octets, la chaine de caractère n'a pas pu être envoyée totalement.

Q2 : Quel paramètre faut-il modifier pour obtenir toute la phrase ? Faites-le pour vérifier !

b) Portée de la radio

Il est également possible de paramétrer la puissance de l'émission/transmission de la radio.

La puissance joue sur la distance maximale entre les cartes où l'on peut recevoir des données.

Il est possible de définir la puissance de 0 à 7 (inclus), sachant qu'une augmentation de puissance augmente la portée mais aussi la consommation énergétique de la carte.

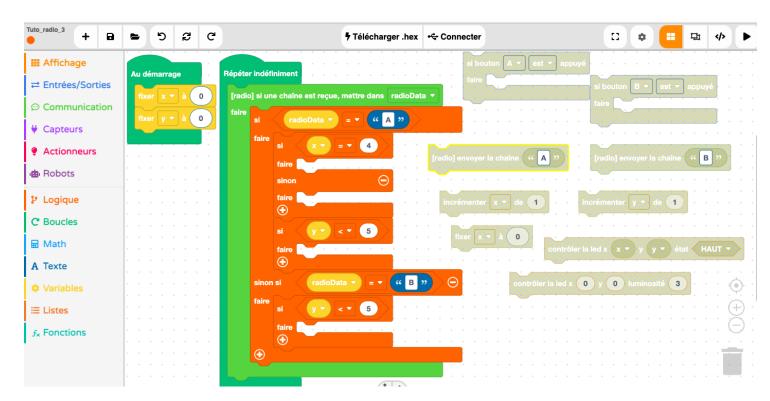
Éloignez-vous et tenter régulièrement d'envoyer des données.

Q3 : Au bout de combien de mètres, la transmission ne s'effectue plus, c'est-à-dire que la carte n'affiche plus la chaîne de caractères ?.....

c) Défi 1 : A vous de jouer...

Le but est de manipuler les LED de l'écran d'une carte voisine avec la transmission radio. On manipule donc un tableau de 5*5 LED. On a les conditions suivantes :

Carte émettrice :


- La commande "A" est envoyée lorsqu'on clique sur le bouton A
- La commande "B" est envoyée lorsqu'on clique sur le bouton B

Carte réceptrice :

- La commande "A" déplace le curseur.
- La commande "B" allume la LED où se trouve le curseur.

- Astuce : Utiliser les blocs "incrémenter de 1" de la catégorie "Variables".
- Aide: il faut utiliser les blocs ci-dessous en modifiant parfois les variables...

Compléter le code avec les blocs au bon endroit et transférer-le vers les deux cartes micro:bit (N'oubliez pas de connecter une des cartes à une batterie externe!)

Tout fonctionne? Pour vérifier, la solution se trouve en fin de document!

2

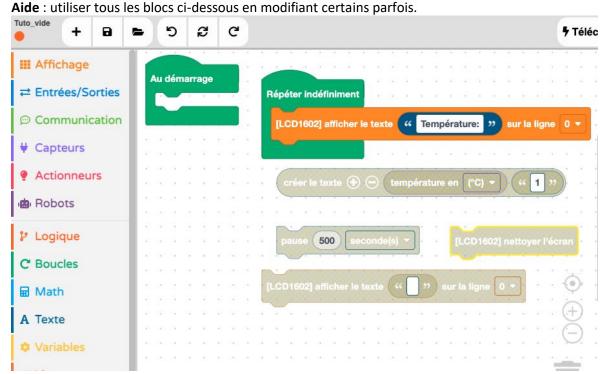
Afficher du texte sur un écran LCD avec Micro:bit (15 min)

a) Schéma du montage:

b) Utilisation de l'afficheur LCD :

Le bloc "Afficher sur la ligne le texte" de la catégorie "Affichage", rubrique modules externes, permet de générer le code nécessaire à l'affichage de texte sur un écran LCD Grove compatible en 3,3V.

Brancher la carte micro:bit au shield Grove ainsi que l'afficheur LCD sur le port I2C, puis transférer le code pour afficher un premier texte sur l'écran LCD : HELLO VITTASCIENCE


L'alphabet est stocké dans la mémoire EEPROM de l'écran LCD. Dès qu'on souhaite écrire un caractère, celui-ci est traduit en une adresse mémoire, et c'est ainsi que le LCD parvient à l'afficher.

L'afficheur disposant de 2 lignes, il est possible de choisir la ligne sur laquelle sera affichée la chaînes de caractères (0 pour la ligne du haut – 1 pour la ligne du bas).

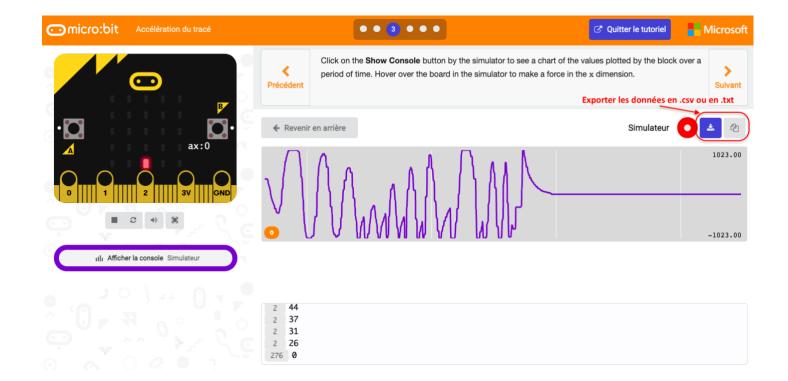
c) Défi 2 : A vous de jouer !

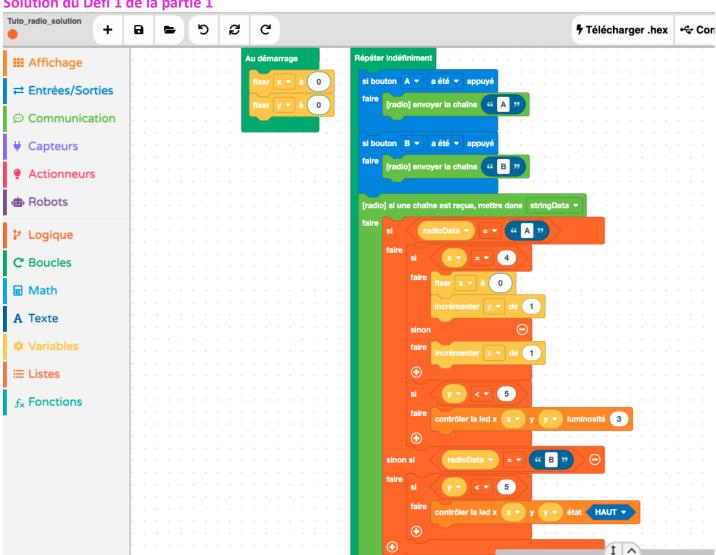
L'objectif est d'afficher sur l'écran LCD la température T (en degré) du processeur de la carte micro:bit. Penser à y afficher le nom de la variable ainsi que l'unité de la grandeur mesurée.

Astuce: Utiliser le bloc "Créer un texte avec" pour chaque ligne ainsi que le bloc "Nettoyer l'afficheur LCD"

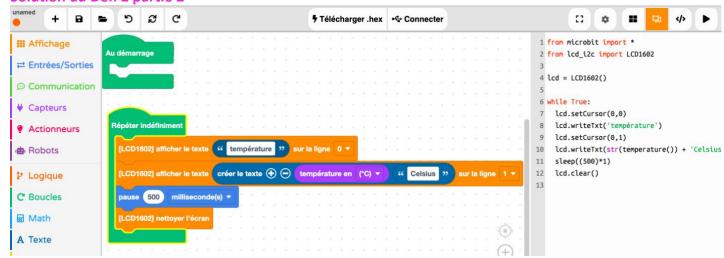
Tout fonctionne? Pour vérifier, la solution se trouve en fin du document.

3


Récupération des données de la carte Micro:bit (10 min)


Ouvrir maintenant l'interface Makecode (choisir mode français si possible) \rightarrow outils \rightarrow Accélération du tracé

Faire le tutoriel « accélération du tracé » et exporter les données au format .csv et au format .txt ainsi que réaliser une capture d'écran du graphe obtenu.



Solution du Défi 1 de la partie 1

