

Thème :	Constitution et transformations de la matière
C 7	Solution de décontamination pour lentilles de contact

Matériel

- Pipettes jaugées de 5,0 mL, de 10mL et de 20 mL et propipette
- Erlenmeyer de 125mL, Burette graduée de 25mL
- · Barreau aimanté, agitateur magnétique
- 3 fioles jaugées de 50,0mL, 100,0mL et de 250,0mL
- Solution S₁ commercialisée de H₂O₂(aq)
- Solution S₀ acidifiée de permanganate de potassium (K+, MnO_4^-) C₀ = 2,0x10⁻² mol.L⁻¹
- pipette compte goutte
- · ordinateur, logiciel Edupython

Objectifs

- Effectuer et exploiter un dosage par suivi colorimétrique.
- Etablir la relation à l'équivalence.
- Savoir tracer la courbe de quantité de matière réactifs, produits en fonction du volume versé n = f(V)
- Connaître la syntaxe du langage python et reconnaître les différents blocs, savoir modifier les paramètres d'un programme python

Réaliser un contrôle-qualité par titrage colorimétrique

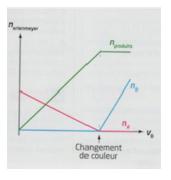
Les produits d'entretien des lentilles de contact contiennent du peroxyde d'hydrogène H₂O₂(aq), appelé aussi eau oxygénée, à 3% en masse.

Comment vérifier si cette solution de décontamination ouvert depuis longtemps est toujours fiable?

Doc.1 Etiquette d'un produit d'entretien pour lentilles de contact

Solution commerciale de décontamination

peroxyde d'hydrogène


3 g pour 100 mL

Doc.2 Données utiles

- Le peroxyde d'hydrogène réagit aves les ions $Mn\,O_4^-({\rm aq})$ en milieu acide
- $M(H_2O_2) = 34,0 \text{ g.mol}^{-1}$
- Couples oxydant/réducteur mis en jeu: $O_2(g)/H_2O_2(aq); MnO_4^-(aq)/Mn^{2+}(aq)$
- seuls les ions MnO_4^- (aq) sont colorés

Doc.3 Représentation de l'évolution des quantités de réactifs et produits

L'équation de réaction support de titrage est : aA(aq) + bB(aq) -> produits

Doc.4 Critère de conformité

Pour un tel produit, on peut considérer que le contrôle de qualité est satisfaisant si l'écart relatif entre la valeur effectuée et l'indication du fabricant est inférieur à 10%.

$$\text{écart relatif} = \left| \frac{x - xref}{xref} \right|$$

1.	ANA Ecrire	les demi-équ	ations d'oxydore	éduction et l'équ	uation de la ré	action chimiqu	e support du titr	age.
2.	ANA Propos	ser un protoc	ole expérimenta	l permettant de	diluer 10 fois	la solution com	nmerciale de H ₂	O ₂ (aq).
3.	VAL Faire v	alider et le m	ettre en oeuvre.					
4.		$_{2}O_{2} = 10,0mL$	nd protocole pou . (deux titrages s					
5.	ANA / COM puis l'incert		résultats des gr	oupes, complét	er le tableau s	suivant, en don	ner la moyenne	et l'écart-type
	Binôme	1	2	3	4	5	6	7
	V _E (mL)							
6.			ntration en quant st toujours fiable.		d'eau oxygéné	e de la solutior	n diluée puis ind	liquer si la
	• • • • • • • • • • • • • • • • • • • •							
7.	-	ès le doc. 3, ¡ volume vers	orévoir la courbe é n = f(V)	représentant le	es quantités d	e matière des r	éactifs et des p	roduits en

fonction du volume versé n = f(V)

Prévoir l'évolution des quantités de matière et repérer le volume équivalent à l'aide d'une simulation (programmation python)

de matière des réactifs et des produits en fonction du volume de solution titrante versé. Justifier.

Doc 5. Programme Python 1

```
import matplotlib.pyplot as plt # importation de la fonction pyplot du fichier matplotlib
    print ("TP Nettoyer ses lentilles de contact")
    print ("------") print("L'équation du dosage peut s'écrire sous la forme : 5A + 2B + 6C \rightarrow 2D + 5E + 8F")
 5
 6
    print("avec : ")
    print("
print("
                      A = peroxyde d'hydrogène")
                      B = ion permanganate")
                      C = proton (acide)")
 9
    print("
    print("
                      D = ion manganèse")
10
    print("
print("
11
                      E = dioxygène")
                      F = eau")
12
     print("On s'intéresse au suivi des quantités de matière de A, B et D")
13
14
15
    na = [8.82E-4] #na = quantité de matière initiale de peroxyde d'hydrogène
16
17
    nb = [3.52E-4]
                       #nb = quantité de matière initiale d'ion permanganate (hyp stoechiométrie)
    nd = [0]
18
                         #nd = quantité de matière initiale d'ion manganèse
19
    x = [0]
                         #X = avancement de la réaction en mol
20
21
    x1 = na[0]/5 # avancement final si le réactif A est limitant
    x2 = nb[0]/2 # avancement final si le réactif B est limitant
24
    Xmax = min(x1, x2) # Xmax est la valeur minimale entre x1 et x2.
    print("Xmax = ", Xmax) # affichage de Xmax
25
26
    nbrePoints = 50 # Nombre de points en abscisse
27
28
29
    plt.xlabel("x (mol)") # affichage du titre de l'axe des abscisses.
plt.ylabel("n (mol)") # affichage du titre de l'axe des ordonnées.
30
31
    plt.title("n=f(x)")
32
33
    plt.grid()
                                # affichage de la grille
34
    Ymax=na[0]
                                # Ymax est forcément la valeur initiale de dichromate car n'a pas été consommé
35
    plt.axis([0,Xmax,0,Ymax])
36
    plt.text(6E-5,6.5E-4,'peroxyde d hydrogène',bbox=dict(facecolor='red'))
plt.text(2E-5,3.8E-4,'ion permanganate',bbox=dict(facecolor='cyan'))
plt.text(8E-6,1.5E-4,'ion manganèse',bbox=dict(facecolor='green'))
37
38
39
40
41
     for i in range (1,nbrePoints+1):
42
                                                     # rajoute l'élément x[0]+i*Xmax/nbrePoints à la liste des <math>x
43
         x.append(x[0]+i*Xmax/nbrePoints)
          na.append(na[0]-5*i*Xmax/nbrePoints) #rajoute l'élément na[0]-2*i*Xmax/nbrePoints la liste des na
44
          nb.append(nb[0]-2*i*Xmax/nbrePoints)
45
46
          nd.append(nd[0]+2*i*Xmax/nbrePoints)
         plt.scatter(x[i],na[i],marker = '.',c='red') # Affiche le point de coordonnées (x[i], na[i]) sous la forme d'un pt rouge
plt.scatter(x[i],nb[i],marker = '.',c='cyan')
plt.scatter(x[i],nd[i],marker = '.',c='green')
47
48
49
50
          plt.pause(0.05)
51
     plt.show()
52
```

Doc 6. Programme Python 2

```
1 import matplotlib.pyplot as plt # importation de la fonction pyplot du fichier matplotlib
      print ("TP Nettoyer ses lentilles de contact")
      print (
      B = ion permanganate")
C = proton (acide)")
D = ion manganèse")
     print("
print("
print("
                             E = dioxygène")
F = eau")
      print("On s'intéresse au suivi des quantités de matière de A. B et D")
      na = [8.82E-4] #na = quantité de matière initiale de peroxyde d'hydrogène
     nb = [0]
nd = [0]
V = [0]
X = [0]
                               #nb = quantité de matière initiale d'ion permanganate (nulle au début)
#nd = quantité de matière initiale d'ion manganèse
                                 #V = volume initial de solution de permanganate
20
                        #X = avancement de la réaction en mol
      VE = 2/5*8.82E-2*1E-2/2E-2 # Calcul du volume équivalent (= 17.6mL)
      Xmax = na[0]/5 # Valeur de l'avancement maximal
      Vmax = 0.025
                            # Volume maximal de sol titrante versé
      plt.xlabel("V solution titrante (L)") # affichage du titre de l'axe des abscisses.
plt.ylabel("n (mol)") # affichage du titre de l'axe des ordonnées.
      plt.title("n=f(volume de solution titrante)")
      plt.grid()
Ymax=na[0]
                                          # Ymax est forcément la valeur initiale de peroxyde d'hydrogène car n'a pas été consommé
      plt.axis([0,Vmax,0,Ymax])
      plt.text(4.5E-3,8E-4,'peroxyde d hydrogène',bbox=dict(facecolor='red'))
plt.text(18E-3,2E-4,'ion permanganate',bbox=dict(facecolor='cyan'))
plt.text(19E-3,4.2E-4,'ion manganèse',bbox=dict(facecolor='green'))
38
      for i in range (0, 26) :
    if V[i] < VE:</pre>
40
                  plt.scatter(V[i],na[i],marker = '.',c='red') # Affiche le point de coordonnées (x[i], na[i]) sous la forme d'un pt rouge plt.scatter(V[i],nb[i],marker = '.',c='cyan') plt.scatter(V[i],nd[i],marker = '.',c='green')
V.append(V[0]+(i+1)*1E-3) # Abscisse : rajoute l'élément V[0]+(i+1)*1E-3 à la liste des V, c'est à dire rajoute 1mL au volume V
42
44
45
                  i=i+1 # obligé de mettre i=i+1 à cette
X=2E-2*V[i]/2 # calcul de l'avancement
46
                                                         i=i+1 à cette ligne afin de bien prendre en compte V[0]
47
                   Na_Zer-Zev[1]/2 # Calculude I available in a na append(na[0]-5*x) # Ordonnée : rajoute l'élément na[0]-2*x à la liste des na nb.append(nb[0]) # Ordonnée : bloque la valeur de nb à zéro avant l'équivalence
48
49
50
                   nd.append(nd[0]+2*X)
51
52
                  V.append(V[0]+(i+1)*1E-3)
                                                                # Abscisse : rajoute l'élément V[0]+i*1E-3 à la liste des V, c'est à dire rajoute 1mL au volume V
53
54
                  X=2E-2*V[i]/2
                   na.append(0) # Ordonnée :rajoute l'élément na[0]-2*i*Xmax/nbrePoints la liste des na
                  na.append(v) # Ordonnée : rajoute l'élément na[v]-2*1*Xmax/nbrevoirts la liste des na
nb.append(2*X-2E-2*VE) # Ordonnée : rajoute l'élément na[v]-2*1*Xmax/nbrevoirts la liste des nb
nd.append(nd[i]) # Ordonnée : bloque la valeur de nd à nd[i] après l'équivalence
plt.scatter(V[i],na[i],marker = '.',c='red') # Affiche le point de coordonnées (V[i], na[i]) sous la forme d'un pt rouge
plt.scatter(V[i],nd[i],marker = '.',c='cyan')
plt.scatter(V[i],nd[i],marker = '.',c='green')
55
56
58
60
            plt.pause(0.05) # Pause de 0,05s entre chaque point
      plt.show()
```

Doc 7. Programme Python 3

9.	COM Définir les 4 blocs du programme retenu
	REA Exécuter le programme choisi et imprimer votre courbe. Déterminer le V_E graphiquement. Comparer au V_E expérimental.
	Pour aller plus loin
On:	souhaite doser la vitamine C (acide ascorbique C ₆ H ₈ O ₆) contenu dans une ampoule de jus de fruit pour bébé.
La r	éaction de dosage a pour équation : I_{2} (I) + $C_6H_8O_6$ (I) \longrightarrow 2 $I_{(aq)}$ + $C_6H_6O_6$ (I) + $2H_{(aq)}$
On s	s un erlenmeyer, on introduit le jus de fruit contenu dans une ampoule de 10mL et l'eau de rinçage de l'ampoule. souhaite doser la vitamine C de ce jus de fruit par une solution de diiode de concentration $C=2,0.10^{-3}~\text{mol.L}^{-1}$. s essais de titrage sont réalisés; les valeurs de volume Ve versé à l'équivalence sont : $V_{e,1}$: entre 15 et 16 mL; = 15,1mL; $V_{e,3}$ = 15,3 mL.
en j	nées: Une solution de diiode est jaune-orangée ; l'ion iodure l - est incolore. Les autres espèces chimiques mises eu lors de ce titrage ne colorent pas les solutions qui les contiennent. se molaire de la vitamine $C: M(C_6H_8O_6) = 176 \text{ g.mol}^{-1}$
11.	ANA Prévoir le changement de couleur qui permet de repérer l'équivalence
 12.	REA Calculer le volume à l'équivalence du titrage avec le nombre de chiffres significatifs adapté.
	REA Réaliser un graphique représentant les évolutions qualitatives des quantités des réactifs et des produits dans l'erlenmeyer en fonction du volume de solution titrante versée. Justifier.

	REA Déterminer la quantité de matière de vitamine C présente dans une ampoule.
	ANA/ REA Reprendre le programme python de la partie 2 et l'adapter pour ce dosage. Exécuter et imprimer la courbe obtenue.
16.	REA /COM L'étiquette de ces ampoules indique 5 mg de vitamine C. Les résultats expérimentaux sont-ils en accord avec cette indication ?
	accord avec cette indication ?
	accord avec cette indication ?
	accord avec cette indication ?
	accord avec cette indication ?
	accord avec cette indication ?